713 research outputs found

    Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-005-0011-zThis article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion–absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions.Peer ReviewedPostprint (author's final draft

    The CIMNE model for generating knowledge on computational engineering and its transfer to society

    Get PDF
    We present an overview of the model implemented by the International Centre for Numerical Methods in Engineering (CIMNE, www.cimne.com ) for the generation of scientific and technical knowledge on computational engineering, understood in the broad sense, the subsequent generation of product resulting from the research activities and the transfer of these products to society for their exploitation in the industrial sector. We present examples of application of the CIMNE model to a number of academic, scientific and industry activities of CIMNE .Preprin

    The cycle of ideas in research development and technology transfer

    Get PDF
    When people talks about research, development and technology transfer (RTD in short) and commercial industrial activities, it is quite usual to mix up objectives, resources and responsibilities. There is a growing opinion, spread by some public administrators and the media, that research groups at universities and RTD centers must be "profitable". In few words, many persons would wish that research is funded with competitive funds or even loans (either public or private) and that the outcomes of the research get into the market rapidly, so that the profits from marketing the corresponding products will allow research groups to be financially self-sustaining. It is also usually argued that companies should increase their research activity and invest more resources in finding new discoveries. The humoristic limit of this situation is pretending that companies will produce Nobel laureates and that a research group would be among the 10 first positions in the ranking of economic organizations in a country. Certainly, both these situations are not impossible, although they are highly improbable. The opposite case is, unfortunately, more frequent, ie. that researchers compelled by their needs to guarantee the financial survival of their groups, abandon or considerably reduce their fundamental research activities, and that companies, confusing what is a Technical Department with an Innovation Department, consider themselves self-sufficient and underestimate or ignore the contact with the real RTD world.Preprin

    Discrete/finite element modelling of rock cutting with a TBM disc cutter

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00603-016-1133-7This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool–rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.Peer ReviewedPostprint (published version

    Simulation of flows with violent free surface motion and moving objects using unstructured grids

    Get PDF
    This is the peer reviewed version of the following article: [Löhner, R. , Yang, C. and Oñate, E. (2007), Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Numer. Meth. Fluids, 53: 1315-1338. doi:10.1002/fld.1244], which has been published in final form at https://doi.org/10.1002/fld.1244. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation follows the classic VOF implementation for the liquid–gas system, considering only the liquid phase. Extrapolation algorithms are used to obtain velocities and pressure in the gas region near the free surface. The VOF technique is validated against the classic dam-break problem, as well as series of 2D sloshing experiments and results from SPH calculations. These and a series of other examples demonstrate that the ability of the present approach to simulate violent free surface flows with strong nonlinear behaviour.Peer ReviewedPostprint (author's final draft

    A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems

    Get PDF
    This is the peer reviewed version of the following article: [de-Pouplana, I., and Oñate, E. (2017) A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech., 41: 110–134. doi: 10.1002/nag.2550], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nag.2550/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."A new mixed displacement-pressure element for solving solid–pore fluid interaction problems is presented. In the resulting coupled system of equations, the balance of momentum equation remains unaltered, while the mass balance equation for the pore fluid is stabilized with the inclusion of higher-order terms multiplied by arbitrary dimensions in space, following the finite calculus (FIC) procedure. The stabilized FIC-FEM formulation can be applied to any kind of interpolation for the displacements and the pressure, but in this work, we have used linear elements of equal order interpolation for both set of unknowns. Examples in 2D and 3D are presented to illustrate the accuracy of the stabilized formulation for solid–pore fluid interaction problems.Peer ReviewedPostprint (author's final draft

    A FIC-based stabilized finite element formulation for turbulent flows

    Get PDF
    We present a new stabilized finite element (FEM) formulation for incompressible flows based on the Finite Increment Calculus (FIC) framework. In comparison to existing FIC approaches for fluids, this formulation involves a new term in the momentum equation, which introduces non-isotropic dissipation in the direction of velocity gradients. We also follow a new approach to the derivation of the stabilized mass equation, inspired by recent developments for quasi-incompressible flows. The presented FIC-FEM formulation is used to simulate turbulent flows, using the dissipation introduced by the method to account for turbulent dissipation in the style of implicit large eddy simulation.Peer ReviewedPostprint (author's final draft

    Finite element modeling of free surface flow in variable porosity media

    Get PDF
    The aim of the present work is to present an overview of some numerical procedures for the simulation of free surface flows within a porous structure. A particular algorithm developed by the authors for solving this type of problems is presented. A modified form of the classical Navier–Stokes equations is proposed, with the principal aim of simulating in a unified way the seepage flow inside rockfill-like porous material and the free surface flow in the clear fluid region. The problem is solved using a semi-explicit stabilized fractional step algorithm where velocity is calculated using a 4th order Runge–Kutta scheme. The numerical formulation is developed in an Eulerian framework using a level set technique to track the evolution of the free surface. An edge-based data structure is employed to allow an easy OpenMP parallelization of the resulting finite element code. The numerical model is validated against laboratory experiments on small scale rockfill dams and is compared with other existing methods for solving similar problems.Peer ReviewedPostprint (author’s final draft
    • …
    corecore